

Schnittstelle Roboter IR04

Installationshandbuch

DEUTSCH

Übersetzung der Original-Bedienungsanleitung

INHALT

1	EINFUHRUNG	
1.1	ERKLÄRUNG DER SYMBOLE	3
1.2	ANMERKUNG	
1.3	MERKMALE DES PRODUKTS	3
2	BEDIENFELD	4
3	SIGNALISIERUNGS-LED	5
4	ELEKTRISCHE ANSCHLÜSSE	6
4.1	NUMMERIERUNG DER KLEMMEN	
4.2	SPANNUNGS- UND STROMGRENZEN FÜR EINGÄNGE UND AUSGÄNGE	7
4.3	CAN-BUS-ANSCHLUSS MIT DEM GENERATOR	8
4.4	DIGITALE EINGÄNGE	
4.4.1 4.4.2	AUSWAHL DES PROZESSES	
4.4.2 4.4.3	AUSWAHL DES AUFTRAGS (JOB)	
4.4.4	FUNKTIONSWEISE VON PULL-UPS AN DIGITALEN EINGÄNGEN	12
4.5	DIGITALE AUSGÄNGE	13
4.6	ANALOGE EINGÄNGE	13
4.7	ANALOGE AUSGÄNGE	14
5	FUNKTIONEN AM DISPLAY	
5.1	ANZEIGE DER EIN- UND AUSGÄNGE	15
5.2	EINSTELLUNGSMENÜ	
5.2.1	TESTMODUS	
5.2.2 5.2.3	I/O SETTINGS DEFAULT SETUP	
5.3	STAND-BY	
5.4	ANZEIGE VON FEHLERN	19
5.5	FIRMWARE-VERSION	
6	ZUSAMMENSETZUNG DES MIG-SCHWEISSSYSTEMS	20
7	SCHALTPLAN	22
8	ERSATZTEILE	23

1 EINFÜHRUNG

WICHTIG! Für Ihre Sicherheit

Die vorliegende Bedienungsanleitung ist dem Anwender vor der Installation und der Inbetriebnahme des Geräts auszuhändigen. Vor der Installation und der Inbetriebnahme des Geräts ist auch das Handbuch "ALLGEMEINE VORSCHRIFTEN FÜR DEN GEBRAUCH", das getrennt von diesem Handbuch mitgeliefert wird, zu lesen.

Die Bedeutung der Symbole in diesem Handbuch und die zugehörigen Hinweise sind in den "ALLGEMEINE VORSCHRIFTEN FÜR DEN GEBRAUCH" erläutert.

Sollte das Handbuch "ALLGEMEINE VORSCHRIFTEN FÜR DEN GEBRAUCH" nicht verfügbar sein, muss unbedingt beim Verkäufer oder Hersteller eine neues Exemplar angefordert werden.

Alle Anleitungen sollten sorgfältig aufbewahrt werden, um ein späteres Nachschlagen zu ermöglichen.

1.1 ERKLÄRUNG DER SYMBOLE

GEFAHR!

Diese Kennzeichnung weist auf tödliche Gefahr oder die Gefahr schwerer Personenschäden hin.

ACHTUNG!

Diese Kennzeichnung weist auf die Gefahr von Personen- und Sachschäden hin.

VORSICHT!

Diese Kennzeichnung weist auf eine möglicherweise gefährliche Situation hin.

WARNHINWEIS!

Diese Kennzeichnung weist auf eine wichtige Information für den normalen Betriebsablauf hin.

1.2 ANMERKUNG

Die in diesem Handbuch enthaltenen Abbildungen dienen der Veranschaulichung und können daher von der effektiven Konfiguration des Produkts abweichen.

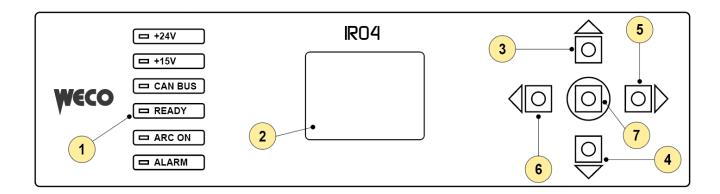
1.3 MERKMALE DES PRODUKTS

Die Roboterschnittstelle IR-04 ist eine Verbindungsplatine zwischen einem Ferngenerator und einem SPS-basierten Industrieroboter und ist für den Einbau in ein automatisiertes Schweißsystem mit Roboterarm vorgesehen. Das Gesamtsystem besteht aus Stromgenerator, Fernsteuerung, Drahtvorschub und Roboterschnittstellenplatine.

Beim WIG-Verfahren besteht das Gesamtsystem aus dem Stromgenerator und der Roboterschnittstellenkarte. Bei MIG-Verfahren besteht das Gesamtsystem aus Stromgenerator, Fernsteuerung, Drahtvorschub und Roboterschnittstellenplatine.

Die Roboterschnittstelle muss in den Robotersteuerschrank eingesetzt werden, mit dem sie über digitale und analoge Ein- und Ausgänge kommuniziert. Sie besteht aus einer elektronischen Platine in einem Kunststoffgehäuse (Abmessungen 162 x 90 x 60 mm) mit DIN-Schienenhaken und Push-In-Federanschlüssen zur Verdrahtung mit den digitalen und analogen E/As der Roboter-SPS.

Die Schnittstelle kommuniziert über den CAN-Bus mit der Fernsteuerung, an die sie mit einer speziellen Verkabelung angeschlossen wird.


Das Modul muss über ein externes Netzteil mit +24 V Spannung versorgt werden.

2 BEDIENFELD

Die Roboterschnittstelle IR04 ist mit einem Bedienfeld ausgestattet, von dem aus der Betriebszustand des Geräts über die Signalisierungs-LEDs und das zentrale Display überwacht werden kann.

Am zentralen Display können Sie den Status der Ein- und Ausgänge einsehen, indem Sie mit den Navigationstasten die gewünschten Informationen auswählen.

Bezug	Funktion
1	Signalisierungs-LED (siehe Abschnitt 3)
2	Display (siehe Abschnitt 5)
3	Navigationstaste PFEIL AUF
4	Navigationstaste PFEIL AB
5	Navigationstaste PFEIL RECHTS
6	Navigationstaste PFEIL LINKS
7	Taste ENTER

3 SIGNALISIERUNGS-LED

Auf der Vorderseite des IR04-Moduls befinden sich einige Signalisierungs-LEDs, die den Benutzer über den Betriebsstatus des Schweißsystems informieren.

In der folgenden Tabelle sind die Signalisierungs-LEDs und ihre Bedeutung angeführt.

NAME	BESCHREIBUNG
+24 V	LED eingeschaltet: Interne Spannungsversorgung mit 24 V wird korrekt erzeugt
+15 V	LED eingeschaltet: Interne Spannungsversorgung mit 15 V wird korrekt erzeugt
CAN-BUS	LED eingeschaltet: Die IR-Platine kommuniziert ordnungsgemäß mit der Maschine. LED blinkend: Die BUS-Kommunikation wurde unterbrochen. LED ausgeschaltet: Die BUS-Kommunikation ist nicht aktiv.
READY	LED eingeschaltet: Die Maschine ist betriebsbereit (es liegen keine Alarme vor und die CAN-BUS- Kommunikation ist aktiv)
ARC ON	LED eingeschaltet: Lichtbogen eingeschaltet. LED ausgeschaltet: Lichtbogen ausgeschaltet.
ALARM	LED eingeschaltet: Die Maschine hat einen Fehler signalisiert. LED ausgeschaltet: Kein Alarm aktiv.

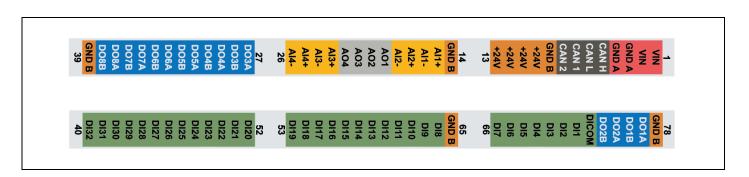
4 ELEKTRISCHE ANSCHLÜSSE

4.1 NUMMERIERUNG DER KLEMMEN

Da es sich um ein komplexes Gerät handelt, müssen Installation und Inbetriebnahme von qualifiziertem Personal mit ausreichenden Kenntnissen in der Elektrotechnik durchgeführt werden.

Das Gerät darf nicht bei aktiver Spannungszufuhr installiert werden.

Installieren Sie die Roboterschnittstelle IR04 in einem mit einer DIN-Schiene ausgestatteten Schaltschrank und befestigen Sie sie daran.


Für die elektrischen Anschlüsse nutzen Sie die beiden Klemmenreihen am Gerät.

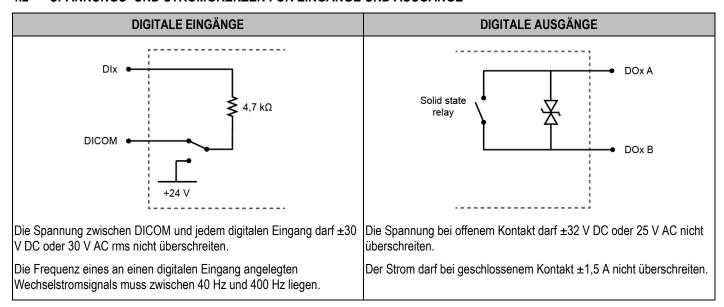
Die Platine muss extern mit einer Gleichspannung von 24 V versorgt werden, die einen Strom von mindestens 1,5 A liefern kann.

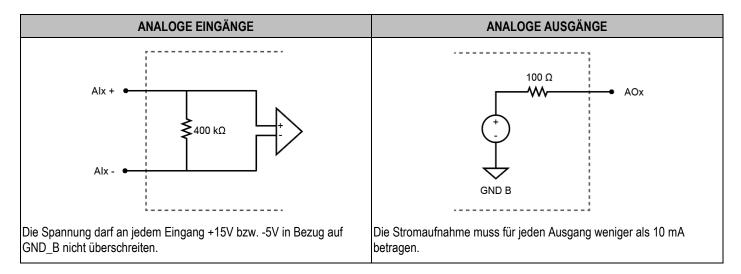
Um die Platine mit Strom zu versorgen, schließen Sie das externe Stromkabel an ein Paar VIN-GNDA-Anschlüsse Ihrer Wahl an (z. B. PIN1 und PIN3). Das verbleibende Paar VIN-GNDA-Anschlüsse (PIN2 und PIN4) kann zur Versorgung anderer Schaltkreise mit +24 V verwendet werden.

⚠ ACHTUNG!

Die Versorgungsspannung des Geräts muss zwischen 20 V und 28 V liegen.

PIN	FRABE	NAME	BESCHREIBUNG
1-2	■ Rot	VIN	Pluspol der Versorgungsspannung (24 V)
3-4	■ Rot	GND A	Versorungsspannungsbezug
5	■ Schwarz	CAN H	Kommunikationssignal CAN H (siehe Abschnitt 4.3)
6	■ Schwarz	CAN L	Kommunikationssignal CAN L (siehe Abschnitt 4.3)
7	■ Schwarz	CAN1	Hilfssignal CAN 1 (siehe Abschnitt 4.3)
8	■ Schwarz	CAN2	Hilfssignal CAN 2 (siehe Abschnitt 4.3)
9	Braun	GND B	Bezug des ROBOTERS
10 - 13	Braun	+24 V	Ausgang mit 24 V (max. Strom: 250 mA Summe aller Anschlüsse)
14	Braun	GND B	Bezug des ROBOTERS
15 - 18	Gelb	Al1 – Al2	Analoge Eingänge (Differenzsignal gemessen zwischen den jeweiligen + und - Anschlüssen)
19 – 22	Grau	AOx	Analoge Ausgänge
23 - 26	Gelb	Al3 – Al4	Analoge Eingänge (Differenzsignal gemessen zwischen den jeweiligen + und - Anschlüssen)
27 - 38	Blau	DOx	Digitale Ausgänge (potentialfreier Kontakt, der zwischen A und B schließt)
39	Braun	GND B	Bezug des ROBOTERS
40 - 52	Grün	Dlx	Digitale Eingänge (DICOM-Referenzsignal)
53 - 64	Grün	Dlx	Digitale Eingänge (DICOM-Referenzsignal)
65	■ Braun	GND B	Bezug des ROBOTERS
66 - 72	Grün	Dlx	Digitale Eingänge (DICOM-Referenzsignal)





PIN	FRABE	NAME	BESCHREIBUNG	
73	Grün	DICOM	Bezug der digitalen Signale (für alle gleich)	
74 - 77	Blau	DOx	Digitale Ausgänge (potentialfreier Kontakt, der zwischen A und B schließt)	
78	Braun	GND B	Bezug des ROBOTERS	

HINWEIS: Über die braunen +24V- und GNB-Anschlüsse können dauerhaft hohe oder niedrige Signale an die Eingänge der Platine weitergeleitet werden.

4.2 SPANNUNGS- UND STROMGRENZEN FÜR EINGÄNGE UND AUSGÄNGE

Beachten Sie die angegebenen Spannungs- und Stromgrenzen der Ein- und Ausgänge.

Andere als die vom Hersteller vorgesehenen Absorptionen oder Stromversorgungen können zu Schäden an der internen Elektronik des Geräts führen.

4.3 CAN-BUS-ANSCHLUSS MIT DEM GENERATOR

Verwenden Sie zur Herstellung der Can-BUS-Anschlüssen zwischen der Roboterschnittstelle IR04 und dem Generator ausschließlich die von Weco mitgelieferten 4-poligen Kabel.

CODE	BESCHREIBUNG
002.0001.0462	Anschlusskabel CAN-BUS mit 4 Drähten, Standardlänge (5 m)
002.0001.0465	Anschlusskabel CAN-BUS mit 4 Drähten, Länge auf Anfrage

Andere als die vom Hersteller angegebenen Kabel können zu Fehlfunktionen und Kommunikationsproblemen zwischen der Schnittstelle und dem Generator führen.

Der 4-polige Stecker (A) muss mit der CAN-BUS-Buchse am Generator verbunden werden. Die vier Drähte mit Kabelschuhen (B) müssen gemäß folgendem Plan an den Klemmenblock der Roboterschnittstelle IRO4 angeschlossen werden:

FRABE	KLEMME	BESCHREIBUNG
Gelb	5	CAN H
Grün	6	CAN L
Weiß	7	CAN 1
Braun	8	CAN 2

4.4 DIGITALE EINGÄNGE

Die digitalen Eingänge der Platine sind in den grünen Klemmen zusammengefasst.

Die Eigenschaften der digitalen Eingänge sind:

- Isoliert und bidirektional
- Möglichkeit, mit invertierter Logik (aktiv niedrig) zu arbeiten.
- Fähigkeit, mit Gleich- oder Wechselstromsignalen (Netzfrequenz) zu arbeiten
- Das Umschalten vom niedrigen Zustand in den hohen Zustand wird durch Anlegen einer Gleichspannung von mindestens 8 V oder eines Wechselsignals mit einem Spitzenwert von mindestens 8 V erreicht.
- Es besteht die Möglichkeit, einen 24-V-Pull-Up bezogen auf GND_B zu aktivieren (nützlich, wenn auf der Roboterseite potentialfreie Kontakte vorhanden sind).

Nachfolgend sind die im Gerät verfügbaren digitalen Eingänge und eine kurze Beschreibung ihrer Funktionsweise angeführt.

BEZ.	NAME	BESCHREIBUNG	BETRIEB (NICHT INVERTIERTE LOGIK)		
DI1	Weld start	Aktiviert/stoppt den Schweißprozess. Muss während des gesamten Schweißprozesses aktiv bleiben.	0 = Ende Schweißen 1 = Start Schweißen		
DI2	Robot ready	Das Signal kommt vom Roboter und zeigt an, dass er bereit zum Schweißen ist.	0 = Roboter nicht bereit 1 = Roboter bereit		
DI3	Wire fwd	Aktiviert den Vorschub des Drahtes im Brenner. Die Funktion ist aktiv, wenn gerade kein Schweißvorgang abläuft. Bei Erkennung eines Kurzschlusses zwischen Draht und zu schweißendem Material (Draht angeklebt) wird der Drahtvorschub unterbrochen.	0 = Vorschub nicht aktiviert 1 = Vorschub aktiviert		
DI4	Wire bwd	Aktiviert den Rückzug des Drahtes im Brenner. Die Funktion ist aktiv, wenn gerade kein Schweißvorgang abläuft.	0 = Rückzug nicht aktiviert 1 = Rückzug aktiviert		
DI5	Gas Test	Das Signal öffnet das Gas-Magnetventil und aktiviert folglich den Gasfluss; solange das Signal aktiv ist, bleibt das Gas-Magnetventil geöffnet.	0 = Gastest nicht aktiviert 1 = Gastest aktiviert		
DI6	Air Test	Das Signal öffnet das Luft-Magnetventil und aktiviert folglich den Luftfluss; solange das Signal aktiv ist, bleibt das Luft-Magnetventil geöffnet.	0 = Lufttest nicht aktiviert 1 = Lufttest aktiviert		
DI7	Piece Search	Aktiviert den Vorgang der Werkstücksuche. Der Roboter bewegt sich entlang der Schweißstation und bringt die Spitze des Brenners nahe an das Werkstück. Der Schweißer erzeugt eine Potentialdifferenz zwischen dem Plus- und dem Minuspol. Wenn der Draht oder die Pinole das Werkstück berührt, entsteht ein Kurzschluss, der vom Generator erkannt wird und den entsprechenden Ausgang (DO3) aktiviert, um zu signalisieren, dass das Werkstück gefunden wurde.	0 = Werkstücksuche nicht aktiv 1 = Werkstücksuche aktiv		
DI8	Par Mode	Dieses Signal wählt aus, ob die Schweißeinstellungen (Parameter) vom Roboter oder vom Generator vorgegeben werden.	0 = Befehl von Generator 1 = Befehl von Roboter		
DI9	Job Mode	Dieses Signal wählt aus, wie die Schweißeinstellungen (Parameter) gegeben werden. Im JOB-Modus; Der Roboter gibt den WeldStart aus und über die Eingänge "Job Num" ist es möglich, einen zuvor erstellten und auf dem Generator gespeicherten JOB (Auftrag) abzurufen, um die Schweißprozesse und - parameter zu variieren.	0 = Roboter führt WeldStart aus; es wird in nur 2 Schritten gearbeitet 1 = Modus JOB		
DI10	Process 0	_			
DI11	Process 1	Die 4 Eingänge stellen die Ziffern einer Binärzahl dar, die den auszuwählenden	Siehe Abschnitt 4.4.1		
DI12	Process 2	Prozess angibt.	Siene Adschnitt 4.4. I		
DI13	Process 3				

BEZ.	NAME	BESCHREIBUNG	BETRIEB (NICHT INVERTIERTE LOGIK)
DI14	Job Num 0	_	
DI15	Job Num 1	-	
DI16	Job Num 2		
DI17	Job Num 3 Job Num 4	Die 8 Eingänge stellen die Ziffern einer Binärzahl dar, die den auszuwählenden	Ciaba Abaabaitt 4.4.2
DI18		Auftrag (Job) angibt.	Siehe Abschnitt 4.4.2
DI19	Job Num 5	_	
DI20	Job Num 6	_	
DI21	Job Num 7		
DI22	Sp. F. DP	Aktiviert die Sonderfunktion "Doppelpuls". Sie können die Sonderfunktion über das Einstellungsmenü dauerhaft deaktivieren (siehe Abschnitt 5.2.2).	0 = Funktion deaktiviert 1 = Funktion aktiviert
DI23	Sp. F. KDEEP	Aktiviert die Sonderfunktion "KDEEP". Sie können die Sonderfunktion über das Einstellungsmenü dauerhaft deaktivieren (siehe Abschnitt 5.2.2).	0 = Funktion deaktiviert 1 = Funktion aktiviert
DI24	Sp. F. DSI	Aktiviert die Sonderfunktion "DSI". Sie können die Sonderfunktion über das Einstellungsmenü dauerhaft deaktivieren (siehe Abschnitt 5.2.2).	0 = Funktion deaktiviert 1 = Funktion aktiviert
DI25	Alarm in	Dieses Signal wird aktiviert, wenn im Roboter ein allgemeiner Alarmzustand auftritt. Das Signal bleibt aktiv, bis die Ursache für den Alarm nicht behoben wurde.	0 = kein Alarm 1 = Alarme aktiv
DI26	Alarm Reset	Funktion, die die im Generator vorhandenen Alarmsignale löscht.	0 = Funktion deaktiviert 1 = Funktion aktiviert
DI27	Simulate in	Aktiviert die Simulationsfunktion: Der Benutzer kann einem im Roboter programmierten Schweißpfad folgen, ohne dass tatsächlich geschweißt wird.	0 = Simulation deaktiviert 1 = Simulation aktiviert
DI28	Search Mode	Mit diesem Parameter können Sie den Suchmodus für das Werkstück festlegen (mit Draht oder mit Pinole).	0 = Suche mit Draht 1 = Suche mit Pinole
DI29	Quick Stop	Wenn aktiviert, stoppt er den Betrieb des Generators (Hinweis: Aus Sicherheitsgründen ist das Signal immer niedrig aktiv und es ist nicht möglich, die invertierte Betriebslogik zu aktivieren.)	0 = Quick Stop deaktiviert 1 = Quick Stop aktiviert
DI30	Free	Eingang nicht implementiert.	-
DI31	Free	Eingang nicht implementiert.	-
DI32	Free	Eingang nicht implementiert.	-

4.4.1 AUSWAHL DES PROZESSES

Die folgende Tabelle zeigt beispielhaft, wie die digitalen Eingänge PROCESS 0 – PROCESS 3 zur richtigen Auswahl des Schweißverfahrens eingestellt werden müssen.

VERFAHREN	DEZIMALCODE	PROCESS 3	PROCESS 2	PROCESS 1	PROCESS 0
Kein Prozess	0	0	0	0	0
Standard-Pulslichtbogen	1	0	0	0	1
Short standard	2	0	0	1	0
HC-Pulslichtbogen	3	0	0	1	1
Short power focus	4	0	1	0	0
Short power root	5	0	1	0	1
MIG manuell	6	0	1	1	0

4.4.2 AUSWAHL DES AUFTRAGS (JOB)

Die folgende Tabelle zeigt beispielhaft, wie die digitalen Eingänge JOB NUM 0 – JOB NUM 7 zur richtigen Auswahl des Schweißauftrag eingestellt werden müssen.

JOB	DEZIMALCODE	JOB NUM 7	JOB NUM 6	JOB NUM 5	JOB NUM 4	JOB NUM 3	JOB NUM 2	JOB NUM 1	JOB NUM 0
Fehler kein Job vorhanden	0	0	0	0	0	0	0	0	0
JOB 1	1	0	0	0	0	0	0	0	1
JOB 2	2	0	0	0	0	0	0	1	0
JOB 3	3	0	0	0	0	0	0	1	1
•••									
JOB 253	253	1	1	1	1	1	1	0	1
JOB 254	254	1	1	1	1	1	1	1	0
JOB 255	255	1	1	1	1	1	1	1	1

4.4.3 ARBEITSMODUS

Sobald die Kommunikation online ist und die Ein- und Ausgänge verwaltet wurden, muss zum Starten des Schweißvorgangs der Fluss der Parameter, Aufträge (Job) und Prozesse verwaltet werden.

Es stehen vier Arbeitsmodi zur Verfügung, die durch Ausnutzen der in der folgenden Tabelle beschriebenen Bits verwendet werden können.

MOD.	ROBOTER	GENERATORE	Par Mode DI8	Job Mode DI9	Job Num DI14 ÷ DI21	Process DI10 ÷ DI13
Α	Weld start	Schweißparameter	0	0	0	0
В	Prozess Weld start Schweißparameter	-	1	0	0	1 ÷ 6
С	Weld start Nummer des Jobs	Job	1	1	1 ÷ 255	0
D	Nummer des Jobs Weld start Schweißparameter	Job	1	0	1 ÷ 255	0

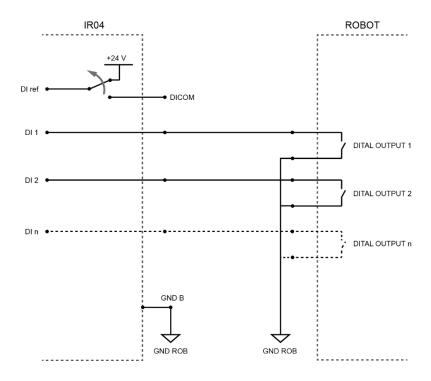
Im Modus A steuert der Roboter lediglich den Start und Stopp des Schweißvorgangs, sämtliche Einstellungen und Schweißparameter werden ausschließlich von der Steuerung des Schweißgeräts vorgegeben.

Im Modus B steuert der Roboter den Start und Stopp des Schweißens, die Prozessauswahl sowie die Schweißparameter (Drahtgeschwindigkeit, Lichtbogenkorrektur, Dynamik, Drahtrückzug).

Im Modus C steuert der Roboter den Start und Stopp des Schweißvorgangs und kann die Auftragsnummer (JOB-Nummer) auswählen, die alle Schweißparameter definiert. Die Aufträge (JOB) müssen zuvor im Generator erstellt und gespeichert werden.

Im Modus D steuert der Roboter den Start und Stopp des Schweißvorgangs und kann die Anzahl der Aufträge (JOB) auswählen, um den Prozess und andere Maschinenparameter vorab festzulegen. Aufträge (JOB) müssen vorab im Generator erstellt und gespeichert werden, enthalten jedoch nicht die Schweißparameter, die vom Roboter verwaltet werden.

4.4.4 FUNKTIONSWEISE VON PULL-UPS AN DIGITALEN EINGÄNGEN


Um maximale Flexibilität zu gewährleisten, wurden die digitalen Eingänge bidirektional und isoliert ausgelegt.

Um einen Eingang zu aktivieren, legen Sie einfach eine positive oder negative Gleichspannung größer als 8 V oder eine Wechselspannung größer als 8 V effektiv zwischen dem entsprechenden Pin in der Klemme und dem DICOM-Pin an (siehe Abschnitt 4.4). Um den gewünschten Effekt zu erzielen, kann der DICOM-Pin an jedes beliebige Potenzial gebunden werden (einschließlich der Roboterreferenz GND_B).

Arbeitet der Roboter mit potentialfreien Kontakten, besteht die Möglichkeit die Pull-Up-Funktion zu aktivieren, sodass die DICOM-Klemme automatisch mit den internen +24 V (bezogen auf GND B) verbunden wird.

Um einen digitalen Eingang zu aktivieren, schließt der Roboter auf diese Weise einfach die entsprechende Klemme in Richtung der Roboterreferenz (GND B). Im Bedarfsfall ist es jederzeit möglich, die Logik der Moduleingänge umzukehren.

Informationen zum Aktivieren der Pull-Up-Funktion und zur Umkehrung der Betriebslogik der Eingänge finden Sie im Abschnitt 5.2.1.

4.5 DIGITALE AUSGÄNGE

Die digitalen Ausgänge der Platine sind in den blauen Klemmen zusammengefasst.

Die Eigenschaften der digitalen Ausgänge sind:

- Möglichkeit, mit invertierter Logik zu arbeiten
- Ausgang mit potentialfreiem Schließerkontakt (Halbleiterrelais) zwischen den Klemmen A und B.
- Bidirektional, mit der Fähigkeit, AC-Signale zu verarbeiten.

BEZ.	NAME	BESCHREIBUNG	BETRIEB (MIT NICHT INVERTIERTER LOGIK)
D01	Alarm	Das Signal zeigt dem Roboter an, dass am Stromgenerator ein Alarm ausgelöst wurde. Er bleibt aktiv, bis die Ursache des Alarms behoben wurde.	0 = kein Alarm 1 = Alarme aktiv
DO2	Arc Stable	Nachdem die Elektrode das Werkstück berührt hat und der Schweißlichtbogen gezündet und stabilisiert wurde, wird das Signal aktiviert: Der Roboter kann mit der Ausführung des Programms fortfahren. Wenn das Signal den Roboter nicht erreicht, wird das Programm nicht ausgeführt. Die Deaktivierung des Signals erfolgt durch Abschalten des Startsignals, das Vorliegen von Alarmen während des Schweißens oder das Ende des Schweißdrahtes.	0 = nicht stabiler Lichtbogen 1 = stabiler Lichtbogen
DO3	Piece Found	Das Signal zeigt an, dass das Werkstück im Zuge der Werkstücksuche gefunden wurde.	0 = Werkstück nicht gefunden 1 = Werkstück gefunden
DO4	Ready	Das Signal zeigt an, dass der Generator bereit für das Schweißen ist.	0 = Generator nicht bereit 1 = Generator bereit
DO5	Simulate out	Das Signal zeigt an, dass der Simulationsprozess aktiviert wurde.	0 = Simulation nicht aktiv 1 = Simulation aktiv
D06	Wire Stuck	Das Signal zeigt an, dass der Draht nach dem Schweißen am Werkstück angeklebt geblieben ist.	0 = Draht nicht angeklebt 1 = Draht angeklebt
D07	Param Error	 Zeigt einen Widerspruch bei den eingestellten Parametern an. Zum Beispiel: Sie möchten einen Prozess und einen Auftrag (Job) gleichzeitig einrichten Der ausgewählte Prozess existiert nicht Der ausgewählte Auftrag (Job) existiert nicht KDEEP- oder DSI-Funktionen werden in einem anderen Prozess als der HC-Puls aktiviert 	0 = kein Fehler 1 = Fehler vorhanden
DO8	Free	Nicht implementiert.	-

4.6 ANALOGE EINGÄNGE

Die analogen Eingänge der Platine sind in den gelben Klemmen zusammengefasst.

Die Eigenschaften der analogen Eingänge sind:

- Differenzsignal gemessen zwischen den Klemmen "+" und "-"
- Vollausschlag einstellbar zwischen 10 V und 14 V
- Möglichkeit, das Lesen nicht verwendeter Eingänge zu deaktivieren

BEZ.	NAME	BESCHREIBUNG	
Al1	Wire Feed Rate	Drahtgeschwindigkeit (im Bereich 0-25 m/min)	
Al2	Arc Length	Lichtbogenlänge (im Bereich -100 +100 oder 10-45V zum manuellen MIG-Schweißen)	
AI3	Dynamic	Lichtbogendynamik/Induktivität (im Bereich -100 +100)	
Al4	Free	Nicht implementiert.	

4.7 **ANALOGE AUSGÄNGE**

Die analogen Ausgänge der Platine sind in den grauen Klemmen zusammengefasst.

Die Eigenschaften der analogen Ausgänge sind:

Vollausschlag einstellbar zwischen 10 V und 14 V.

BEZ.	NAME	BESCHREIBUNG
AO1	Voltage	Messung der Schweißspannung (im Bereich 0 - 80 V)
AO2	Current	Messung des Schweißstroms (im Bereich 0 - 600 A)
AO3	Wire Speed	Messung der Drahtgeschwindigkeit (im Bereich 0 - 25 m/min)
AO4	Free	Nicht implementiert.

5 FUNKTIONEN AM DISPLAY

Über das zentrale Display können Sie den Status der Ein- und Ausgänge des Moduls anzeigen und einige Einstellungen der Platine ändern.

5.1 ANZEIGE DER EIN- UND AUSGÄNGE

Beim Einschalten des Moduls wird auf dem Display die Liste der digitalen und analogen Ein- und Ausgänge mit ihrem aktuellen Status und ihrer Identifikationsnummer angezeigt.

Drücken Sie die Tasten "PFEIL RECHTS" und "PFEIL LINKS", um die Kategorie der angezeigten Ein- und Ausgänge in der folgenden Reihenfolge zu ändern: Digital Input, Digital Output, Analog Input, Analog Output.

: 0

:0

: 0

:0

:0

: 0

:0

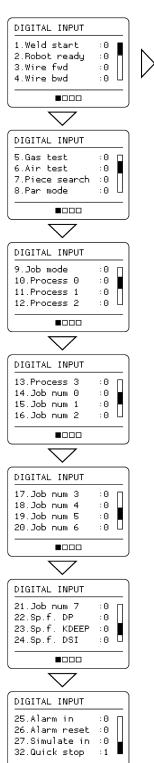
Drücken Sie die Tasten PFEIL AUF und PFEIL AB um die Liste nach oben oder unten zu scrollen.

1.Alarm

4.Ready

DIGITAL OUTPUT

2.Arc stable

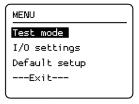

3.Piece found

DIGITAL OUTPUT

5.Simulate out

6.Wire stuck

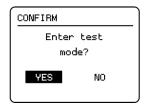
7.Panam ennon



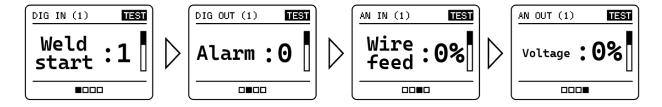
5.2 EINSTELLUNGSMENÜ

Wenn Sie die Taste ENTER gedrückt halten, gelangen Sie in das Einstellungsmenü und können dort folgende Punkte ändern:

- Test Mode
- I/O Settings
- Default Setup



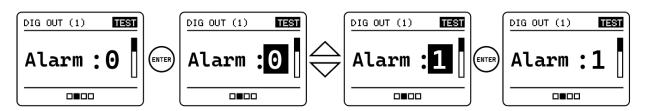
Um den Menübildschirm zu verlassen, wählen Sie "Exit" und drücken Sie die Taste ENTER.


5.2.1 TESTMODUS

Wenn Sie den Testmodus aktivieren, wird die CAN-Kommunikation mit dem Generator unterbrochen und der Benutzer kann die verschiedenen Ausgänge manuell aktivieren und das Verhalten der Eingänge überwachen.

Wählen Sie "Test Mode" (Testmodus) und drücken Sie die Taste ENTER: es erscheint eine Bestätigungsmeldung. Wählen Sie "YES" und drücken Sie die Taster ENTER.

Sobald der Testmodus aktiviert ist, werden die folgenden Bildschirme angezeigt, auf denen Sie die Ein- und Ausgänge des Moduls anzeigen können.



Drücken Sie die Tasten PFEIL AUF und PFEIL AB um die Liste nach oben oder unten zu scrollen.: Die Eingangs- oder Ausgangsnummer erhöht sich jeweils um eine Einheit (zum Beispiel: DIG IN (1), DIG IN (2), DIG IN (3), usw.)

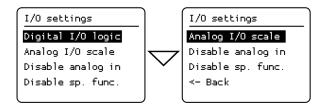
Drücken Sie die Tasten "PFEIL RECHTS" und "PFEIL LINKS", um die Kategorie der angezeigten Ein- und Ausgänge in der folgenden Reihenfolge zu ändern: DIG IN (digitale Eingänge), DIG OUT (digitale Ausgänge), AN IN (analoge Eingänge), AN OUT (analoge Ausgänge).

Um den Status eines Ausgangs zu ändern, wählen Sie mit den Navigationstasten den gewünschten Ausgang aus und drücken Sie dann die Taste ENTER: Der Parameter des Ausgangs wird hervorgehoben.

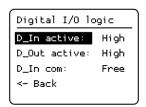
Stellen Sie den gewünschten Wert für den Parameter ein, indem Sie die Tasten PFEIL AUF oder PFEIL AB drücken. Drücken Sie dann die Taste ENTER, um den Bearbeitungsmodus zu verlassen: Der Parameter wird nicht mehr hervorgehoben und ist jetzt auf den vom Benutzer eingegebenen Wert eingestellt.

Cod.006.0001.2400 31.03.2025 v0

DEUTSCH


Halten Sie die Taste ENTER gedrückt, um aus dem Testmodus auszusteigen: es wird eine Bestätigungsmoeldung angezeigt. Wählen Sie "YES" und drücken Sie die Taster ENTER.

5.2.2 I/O SETTINGS


Auf dieser Seite können Sie einstellen, wie sich die Ein- und Ausgänge verhalten sollen.

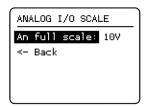
Wählen Sie den Punkt "I/O-Settings" (E/A-Einstellungen) und drücken Sie die Taste ENTER. Die folgenden Untermenüs werden angezeigt.

BETRIEBSLOGIK DER DIGITALEN EIN- UND AUSGÄNGE

Durch Auswahl des Punktes "Digital I/O logic" und Drücken der Taste ENTER können Sie die Logik (aktiv hoch oder aktiv niedrig) aller digitalen Eingänge (außer "Quick Stop") und aller digitalen Ausgänge zu invertieren, sowie die Pull-Ups an den digitalen Eingängen aktivieren.

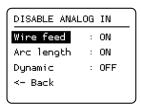
Folgende Optionen sind verfügbar:

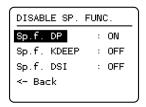
- D_In active: ermöglicht, die Aktivierungslogik der digitalen Eingänge (hoch oder niedrig) einzustellen.
- D_Out active: ermöglicht, die Aktivierungslogik der digitalen Ausgänge (hoch oder niedrig) einzustellen.
- D_in com: ermöglicht, die Pull-Ups an den digitalen Eingängen zu aktivieren (siehe Abschnitt 4.4.4), die verfügbaren Optionen sind:
 - "Free": Um einen Eingang zu aktivieren, legen Sie einfach eine positive oder negative Spannung, die größer als die Schwellenspannung ist, zwischen dem entsprechenden Pin in der Klemme und dem DICOM-Pin an.
 - o "+24V": Die DICOM-Klemme wird automatisch mit den internen +24V (bezogen auf GND B) verbunden.


Um einen Parameter zu ändern, gehen Sie wie folgt vor:

- a) Wählen Sie den Parameter mit den Tasten PFEIL AUF und PFEIL AB aus der Liste aus.
- b) Drücken Sie die Taste ENTER: Der Parameterwert wird hervorgehoben.
- c) Wählen Sie den gewünschten Parameterwert mit den Tasten PFEIL AUF und PFEIL AB aus.
- d) Drücken Sie die Taste ENTER: Der eingestellte Wert des Parameters wird wirksam und ist nicht mehr hervorgehoben.

VOLLAUSCHLAG DER ANALOGEN EIN- UND AUSGÄNGE


Durch Auswahl des Punkts "Analog I/O scale" und Drücken der Taste ENTER können die Maximalwerte der analogen Ein- und Ausgänge verändert werden, wobei zwischen den beiden Optionen 10 V und 14 V gewählt werden kann.


DEAKTIVIERNG DER ANALOGEN EINGÄNGE

Durch Auswahl des Punkts "Disable analog IN" und Drücken der Taste ENTER können die nicht verwendeten analogen Eingänge deaktiviert werden.

DEAKTIVIERUNG DER SONDERUNKTIONEN

Durch Auswahl von "Disable sp. Func." und durch Drücken der Taste ENTER können Sie nicht verwendete Sonderfunktionen deaktivieren.

Um die Menüs zu verlassen, wählen Sie "Back" und drücken Sie die Taste ENTER.

5.2.3 DEFAULT SETUP

Auf diesem Bildschirm kann das Modul auf die Werkseinstellungen zurückgesetzt werden, d.h.:

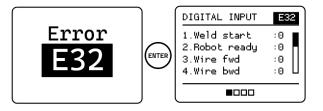
- Digitale Ein- und Ausgänge aktiv oben
- Vollauschlag der analogen Ein- und Ausgänge bei 10 V
- Pull-up der deaktivierten digitalen Eingänge
- Alle analogen Eingänge deaktiviert
- Alle Sonderfunktionen aktiviert

Wählen Sie den Punkt "Default Setup" aus und drücken Sie die Taste ENTER: es erscheint eine Bestätigungsaufforderung.

Wählen Sie "YES" und drücken Sie die Taster ENTER, um das Modul auf die Werkseinstellungen zurückzusetzen.

Wählen Sie "NO" aus und drücken Sie die Taste ENTER, um zum vorhergehenden Bildschirm zurückzukehren und die aktuellen Einstellungen beizubehalten.

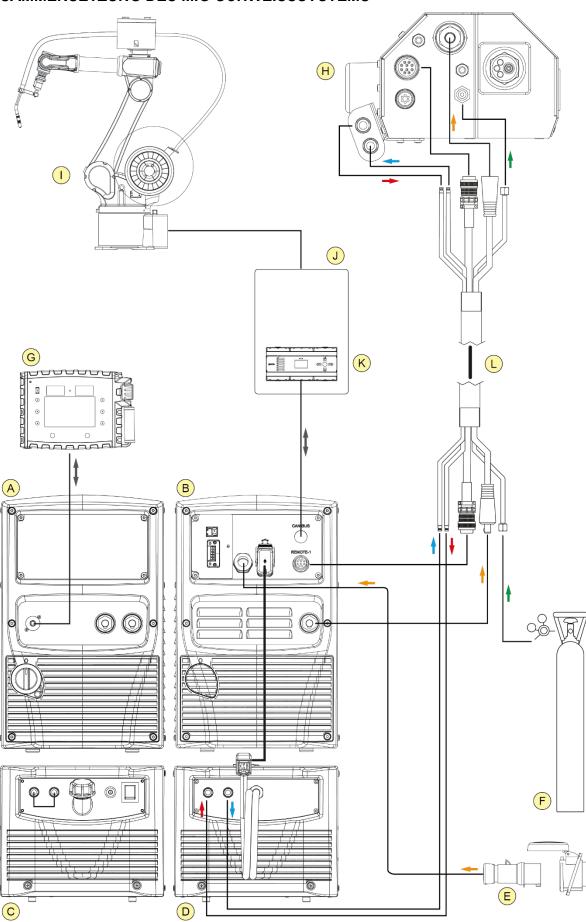
5.3 STAND-BY


Das Display schaltet sich bei Inaktivität automatisch aus. Um es wieder zu aktivieren, drücken Sie einfach eine beliebige Taste.

5.4 ANZEIGE VON FEHLERN

Wenn der Stromgenerator einen Fehler meldet, wird der entsprechende Code auch auf dem Vollbild des Displays der Roboterschnittstelle IR04 angezeigt.

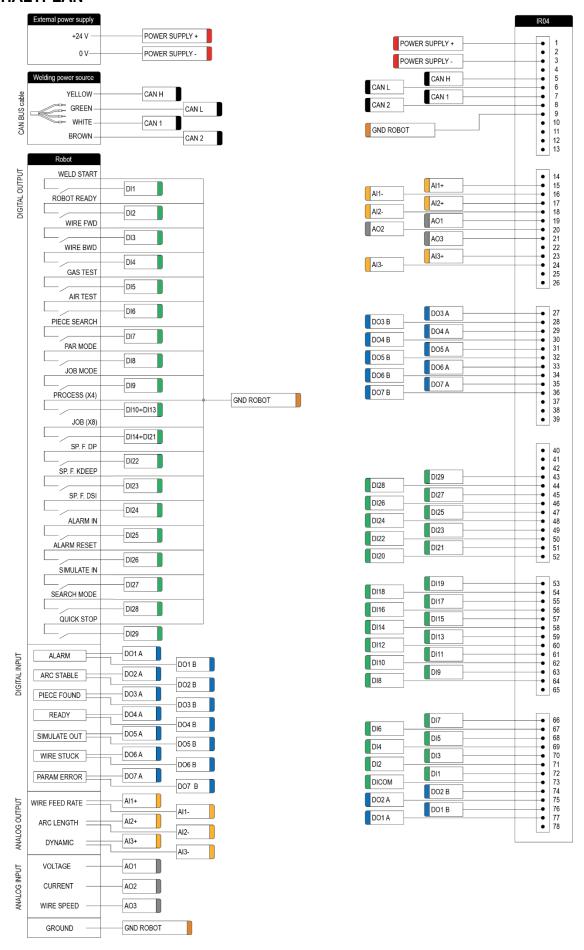
Durch Drücken der Taste ENTER können Sie den Fehlerbildschirm verlassen und durch die Menüs navigieren. Der Fehlercode bleibt solange oben rechts am Display angezeigt, bis der Fehler in der Schweißstromgenerator zurückgesetzt wird.


5.5 FIRMWARE-VERSION

Die Version der im Modul installierten Firmware wird auf der Hauptseite des Einstellungsmenüs oben rechts angezeigt. Um in das Einstellungsmenü zu gelangen, halten Sie die Taste ENTER gedrückt (siehe Abschnitt 5.2)

6 ZUSAMMENSETZUNG DES MIG-SCHWEISSSYSTEMS

Komponentenliste


- A Generator (Vorderansicht)
- B Generator (Rückansicht)
- C Kühleinheit (Vorderansicht)
- D Kühleinheit (Rückansicht)
- E Steckdose
- F Gasflasche
- **G** Fernsteuerung
- H Drahtzugeinheit
- I Schweißroboter
- J Steuerschrank Roboter (SPS)
- K Schnittstelle Roboter
- L Kabelbündel

Legende

- Elektrischer Strom
- Gas
- Kühlmittel (Druckleitung)
- Kühlmittel (Rücklaufleitung)
- CAN-BUS-Linie

7 SCHALTPLAN

WARNHINWEIS!

Der abgebildete Schaltplan bezieht sich auf folgende Konfiguration:

- Roboter mit digitalen Relaisausgängen;
- Roboter mit digitalen Eingängen, die ein Signal vom Typ "offen/geschlossen" interpretieren können;
- Roboter mit analogen Eingängen, bezogen auf GND_ROB (Roboterreferenz);
- Roboter mit differenziellen Analogausgängen;
- IR04-Schnittstelle mit den Parametern "D_in COM" = +24 V und "D_in ACTIVE" = LOW eingestellt

8 ERSATZTEILE

Bei Störungen oder Defekten wenden Sie sich an den Gerätehersteller.

WECO S.r.I. www.weco.it

Cod.006.0001.2400 31.03.2025 v0